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a b s t r a c t

Stormwater runoff is a significant source of heavy metals, including cadmium (Cd),
chromium (Cr), and nickel (Ni), which pose ecological and human health problems.
Various filter media have been evaluated for heavy metal removal from stormwater via
adsorption, most involving chemical- or energy-intensive processes. Aluminum-based
drinking water treatment residuals (WTR), a non-hazardous byproduct of drinking water
treatment, are an inexpensive sorbent for heavy metals. However, the low permeability
of WTR is a problem and requires mixing with sand and carbon materials to improve
flow; but such amendments also reduce its sorption capacity. To overcome this problem,
a granulated WTR sorbent was generated using a green technique involving organic
materials and a low-energy process. Batch studies showed that WTR granules remove Cd,
Cr, and Ni simultaneously. Metal removal was adequately described by pseudo-second-
order kinetic models and Langmuir and Freundlich isotherm models. The overall removal
performance was Cr > Cd > Ni. The presence of divalent cations in solution negatively
affected metal removal; anions had a strong effect on Cd removal. A triple-layer surface
complexation model adequately described metal removal. Results demonstrated the
strong potential of the WTR granules to emerge as green filter media for the removal of
heavy metals from stormwater runoff.
© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Water pollution by heavy metals has been a major environmental concern due to their nonbiodegradability and
igh toxicity. Among various heavy metals, cadmium (Cd), chromium (Cr), and nickel (Ni), can be hazardous even at
ow concentrations (Rahman and Singh, 2019). Exposure to cadmium causes lung cancer and osteomalacia. Chromium,
articularly Cr(VI), is toxic and can affect the central nervous system and cause kidney and liver damage. Excessive
xposure to nickel may lead to cancer, nervous system damage, and a reduction in cell growth (Sharma, 2015).
Stormwater runoff is recognized as a significant source of heavy metals, which mainly come from traffic-related

ources, such as tire wear, brake linings, engine, and vehicle bodywear (Huber et al., 2016; McKenzie et al., 2009; Müller
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plasma-optical emission spectrometer; PFO, pseudo-first-order; PSO, pseudo-second-order; SCM, surface complexation model; SEM-EDS, scanning
electron microscope-energy dispersion spectroscopy; SSA, specific surface area; TCLP, toxicity characteristic leaching procedure; TLM, triple-layer
model; WTR, aluminum-based drinking water treatment residuals
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et al., 2020). In urban environments, heavy metals together with other anthropogenic pollutants on impervious surfaces
are washed off by stormwater runoff and typically discharged to existing water bodies (e.g., rivers and lakes) or, without
treatment, into groundwater (Göbel et al., 2007).

Stormwater best management practices (BMPs), including green infrastructures, have increasingly gained attention
rom practitioners in recent years, who have focused on the mitigation of various stormwater-related problems, primarily
ydrologic issues such as flooding. However, these mitigation measures have limited capability to remove heavy metals,
specially dissolved heavy metals, which are more bioavailable and more difficult to remove compared to particulate-
ound heavy metals (Alam et al., 2018; Cederkvist et al., 2013; Flanagan et al., 2019; Lange et al., 2020; Maniquiz-Redillas
nd Kim, 2016). Therefore, economical and effective technologies are imperative for the treatment of dissolved heavy
etals in stormwater.
Sorption is considered an economical and effective process for removing dissolved pollutants with the advantages of

inimal waste generation, low footprint, and low energy requirement (Kumar et al., 2019; Søberg et al., 2019). Therefore,
revious studies evaluated various materials (e.g., sand, compost, biochar, chalk, pumice stone, agricultural and industrial
aste byproducts) for their effectiveness as sorbents in metal removal from stormwater facilities (Esfandiar et al., 2022;
øberg et al., 2019). However, most of these studies generally evaluated sorbents for their removal efficiency as a powder
r loose material (Chakraborty et al., 2020; Rafatullah et al., 2010; Shimabuku et al., 2016), which are not suitable for
mplementation in stormwater treatment in most cases. The challenge in encapsulating or affixing the sorbent, which is
he critical process toward successful implementation, remains and will ultimately affect the overall removal efficiency
f the sorbents.
In this study, aluminum-based water treatment residuals (WTR) were utilized for generating sorbent granules. WTR is

byproduct of drinking water treatment facilities that use aluminum salts as coagulants. Every year, large quantities of
TR are generated across the world. In Japan, 290,000 tons of WTR were generated in 2011. The annual WTR generation

n Netherland in 2014 and the UK in 2013 were 328,000 and 131,000 tons, respectively. In addition, the annual WTR
eneration in Scotland is expected to increase to 390,000 tons by 2025, which is a substantial increase compared to
10,000 tons in 2005 (Zhao et al., 2018).
Due to the increasing generation of WTR, reuse is imperative due to economic and environmental constraints on

andfilling, which is its common method of disposal. WTR generally contains Al (oxy)hydroxides, activated carbon, and
atural organic matter, which are suitable substances to promote sorption processes for reducing trace metal mobility in
oil and waters (Castaldi et al., 2015). The effectiveness of WTR in removing environmental pollutants was investigated
n many previous studies (Duan and Fedler, 2021; Makris et al., 2005, 2006; Na Nagara et al., 2021; Nagar et al., 2010).
ased on Toxicity Characteristic Leaching Procedure (TCLP) results, the concentration of the toxic heavy metals in the
eachate from WTR is well below regulatory limits, confirming that WTR is a non-hazardous material (Sarkar et al., 2020).
onsiderable advancements in application of WTR has been made in the past decade (Turner et al., 2019; Xu et al.,
020). WTR was investigated for use in various applications as remediation agents, such as wetland medium (Hu et al.,
012), coating material on wood mulch (Sidhu et al., 2020; Soleimanifar et al., 2016, 2019), catch basin filter amendment
Na Nagara et al., 2021), and bioretention amendment (Liu and Davis, 2014). Therefore, WTR is suitable for developing
orbent material from economic, environmental, and technical standpoints.
Although pollutant removal performance is the key focus of sorbent development, the hydraulic characteristics of the

aterials must be taken into account to prevent adverse influence on the flow of stormwater when implemented. Since
TR is a clay-like material with very low permeability, modification or amendment is required to improve its hydraulic

onductivity. In our previous study, WTR was amended with sand and carbon material (Na Nagara et al., 2021). However,
mending and mixing approaches pose a trade-off between flow and sorption performance since the amendments are less
fficient in removing heavy metals compared to WTR. Therefore, encapsulation of WTR was selected as a suitable approach
o improve hydraulic conductivity when implementing it as a sorbent material. In this study, WTR was encapsulated with
alcium alginate using organic materials and a low energy process as described in the U.S. Patent Application Publication
o. US 2020/0316556 A1 (Sarkar et al., 2020). Therefore, the resulting product, the WTR granules, is considered ‘‘green’’
rom both economic and environmental perspectives.

The objectives of this study were to (i) investigate the physicochemical characteristics of the WTR granules; (ii) evaluate
he Cd, Cr, and Ni removal performance of the WTR granules through kinetics, and sorption isotherms; (iii) investigate
he effects of background ions, ionic strength, and pH on Cd, Cr, and Ni removal by sorption edge experiments; and
iv) understand the mechanisms that regulate the sorption of the three heavy metals and develop surface complexation
odels to predict the removal performance before implementation in stormwater facilities.

. Materials and methods

.1. Materials

Stock solutions of Cd, Cr, and Ni were prepared by dissolving their respective salts: Cd(NO3)2•4H2O (Sigma-Aldrich,
O, USA), K2Cr2O7 (Sigma-Aldrich, MO, USA), and Ni(NO3)2•6H2O (Spectrum Chemical Mfg., NJ, USA) in deionized (DI)
ater. NaOH, HNO3, NaCl, NaNO3, KCl, CaCl2, and MgCl2 were acquired from Fisher Scientific (NJ, USA). Certified reference
olutions were purchased from High-Purity Standards (SC, USA). Deionized (DI) water (electrical resistivity >18.2 M�)
as used for preparing all solutions throughout the study. WTR was collected from the New Jersey American Water
NJAW) Water Treatment Plant in Bridgewater Township, NJ, USA, where aluminum salts are used as the main coagulant.
2
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2.2. WTR granules generation

WTR granules were generated by following the method described in the U.S. Patent Application Publication No. US
020/0316556 A1 (Sarkar et al., 2020). In brief, WTR was air-dried, followed by grinding and passing through a 1 mm sieve.
he <1 mm fraction was milled by a planetary ball mill (Fritsch Pulverisette 5, Fritsch GmbH, Idar-Oberstein, Germany)
t 290 rpm (tray rotating) and 590 rpm (grinding jar rotating) for 18 min. The milled WTR was added to a potassium
lginate (BOC Sciences, NY, USA) solution. The WTR-alginate solution was added dropwise to a calcium solution prepared
sing eggshell powder to generate the WTR granules. The granules were washed several times with DI water until no
esidue from the calcium solution was present.

.3. WTR granules characterization

The surface morphology and elemental semi-quantitative analysis of the samples were done by scanning electron
icroscope-energy dispersion spectroscopy (SEM-EDS; Auriga Small Dual-Beam FIB-SEM, Carl Zeiss, Jena, Germany;
oupled with an 80 mm2 silicon drift detector EDS system, Oxford Instruments, MA, USA). The surface chemical properties
f the samples were characterized by Fourier transform infrared spectroscopy (FTIR Spectrometer, PerkinElmer Spectrum
00, MA, USA), with spectra recorded between 400 and 4000 cm−1. Sample pellets were prepared for transmission

analyses with fused-KBr with an equal amount of KBr for all samples at a 10:1 ratio. A total of 25 scans were averaged for
each sample and the resolution was 4 cm−1. The spectra were analyzed using OMNIC 9 software (Thermo Fisher Scientific
Inc., MA, USA). The specific surface area (SSA) was evaluated using a surface area analyzer (Micromeritics ASAP 2020, GA,
USA) where nitrogen was used as absorbent.

2.4. Kinetic study

The kinetic study was conducted in 1-L bottles containing 800 mL of synthetic stormwater to provide adequate
headspace for mixing. The synthetic stormwater was prepared by diluting the prepared stock solutions in deionized water
to achieve the target concentrations of 35, 85, and 100 µg/L for Cd, Cr, and Ni, respectively. The concentration of Cd, Cr,
and Ni was determined based on their typical concentrations in stormwater runoff as reported in Huber et al. (2016).
Sodium nitrate (NaNO3) was used as a background electrolyte at the concentration of 0.1 M. The pH of the solutions
was adjusted to pH 7.0 using HNO3 and NaOH. pH buffer was not used to maintain the experiment at a constant pH
since it would not be realistic and would suppress the surface complexation of the metals (Smičiklas et al., 2009). WTR
granules (8 g) were loaded into the bottles. During the experiment, the bottles were placed on a rotary shaker at 180
rpm. Representative samples were collected at different times (5, 10, 20, 30 min, and 1, 2, 4, 6, 8, 12, 24, 36 h), filtered
through a 0.45-µm nylon syringe filter, and analyzed using an inductively coupled plasma-optical emission spectrometer
(ICP-OES, 5100 Agilent Technologies, CA, USA).

2.5. Sorption isotherm study

To evaluate the effectiveness of the WTR granules and determine equilibrium sorption parameters, a sorption isotherm
experiment was performed. The WTR granules (1% w/v) were placed in 50-mL centrifuge tubes with 40 mL of the synthetic
stormwater with a single pollutant at varying concentrations. The pH of the solutions was adjusted to pH 7.0 using HNO3
and NaOH. The centrifuge tubes were placed on a rotary shaker at 180 rpm for 48 h at room temperature (23 ◦C ± 1 ◦C).
After the designated time, samples were collected, filtered through a 0.45-µm nylon syringe filter, and analyzed using
the ICP-OES.

2.6. Effect of environmental parameters

The effect of environmental parameters, including background electrolytes (NaNO3, NaCl, KCl, CaCl2, MgCl2) and ionic
trength (0 to 0.1 M), were investigated at a fixed pH (pH 7) and fixed initial concentrations of the metals (5 mg/L).
he effect of the environmental parameters was performed by following the same procedure as used in the sorption
sotherm study. Each environmental parameter was evaluated in a separate set of samples. When they were not subjected
o variation, the background electrolyte was NaNO3 with an ionic strength of 0.1 M. After 48 h, samples were collected,
iltered through a 0.45-µm nylon syringe filter, and analyzed using the ICP-OES.

.7. Sorption edge study

Solution pH is one of the most influencing factors on sorption characteristics. To understand the effect of pH on Cd, Cr,
nd Ni sorption, sorption edge study was performed by following the same procedure as used in the sorption isotherm
tudy, except the target concentrations of the heavy metals were kept constant at 5 mg/L while the solution pH was
aried in the range of 5.2 to 7.9 using HNO3 and NaOH. This pH range was determined based on the typical pH range

ocumented in the literature (Göbel et al., 2007).

3
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2.8. Modeling

Based on the experimental data obtained, models were developed for the kinetic, sorption isotherm, and sorption edge
tudies. The kinetic data were used to perform kinetic modeling, which leads to suitable rate expressions characteristic of
ossible reaction mechanisms and allows estimation of sorption rates. In this study, the pseudo-first-order (PFO) equation
Lagergren, 1898), pseudo-second-order (PSO) equation (Blanchard et al., 1984), and intraparticle diffusion model (Weber
nd Morris, 1963) were considered. The mathematical expression of the models and related parameters are presented as
ollows:
he amount of each metal adsorbed by the WTR granules at equilibrium (qe):

qe =
(C0 − Ce) V

m
(1)

The amount of each metal adsorbed by the WTR granules at time t (qt):

qt =
(C0 − Ct) V

m
(2)

The pseudo-first-order (PFO) equation:

ln (qe − qt) = −k1t + ln (qe) (3)

The pseudo-second-order (PSO) equation:
t
qt

=
1
qe

t +
1

k2q2e
(4)

The intraparticle diffusion equation:

qt = kit0.5 + C (5)

where C0, Ce, Ct are the initial concentrations, equilibrium concentrations, and concentrations at time t of adsorbate in
bulk solution, respectively; V is the volume of bulk solution; m is the mass of adsorbent. t is contact time, k1 and k2 are
the PFO and PSO rate constants, ki is the intraparticle diffusion rate constant, and C is the intercept.

The sorption isotherm data were fitted against the two most commonly used isotherm models: Langmuir (1918) and
Freundlich (1907). The Langmuir equation is considered the most common and simplest model assuming monolayer
adsorption, while the Freundlich model is an empirical model used to represent heterogeneous systems. The models
are represented mathematically as follows:
The Langmuir isotherm model:

qe =
Q 0
maxKLCe

1 + KLCe
(6)

The linearized Langmuir isotherm model:

1
qe

=

(
1

Q 0
maxKL

)
1
Ce

+
1

Q o
max

(7)

The Freundlich isotherm model:

qe = KFC1/n
e (8)

The linearized Freundlich isotherm model:

ln (qe) = ln (KF ) +
1
n
ln (Ce) (9)

where qt and qe are the concentration of the metals sorbed onto the WTR granules at time t and equilibrium, respectively.
KL is Langmuir isotherm constant, Q0

max is maximum saturated monolayer adsorption capacity of an adsorbent, KF is
Freundlich isotherm capacity parameter and 1/n is Freundlich isotherm intensity parameter. In addition, separation factor
(RL) (Hall et al., 1966), which is derived from KL as shown in Eq. (10), was also determined
The separation factor (RL):

RL =
1

1 + KLC0
(10)

n contrast to the Langmuir and Freundlich models, the surface complexation model (SCM) allows the prediction of the
orption processes at solid-water interfaces by considering the impact of solution chemistry, such as pH and ionic strength.
his is important for predicting the removal performance before implementing the WTR granule-based stormwater
reatment systems particularly because stormwater is known to have a high variation in water chemistry from both
4
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temporal and spatial aspects. Based on the data from the sorption edge study, surface complexation modeling was
performed using MINEQL+ version 5.0 (Environmental Research Software, ME, USA) in conjunction with MINFIT (Xie et al.,
2016). A triple-layer model (TLM) was used for this study. The TLM considers the solid-water interfaces into three regions:
(1) a surface plane for strongly adsorbed ions including H+ and OH−, (2) a near-surface plane for weakly adsorbed ions,
(3) a diffused layer plane. Compared to the other models (e.g., constant capacitance and diffuse layer models), the TLM
provides an advantage to take the influence of the electrolyte ions into account (Wen et al., 1998).

2.9. Chemical and statistical analysis

Certified reference solutions were analyzed along with the samples. Both internal and external standards were analyzed
in all ICP-OES analyses. The calibration was performed before each analysis with an R2 greater than 0.995. Triplicate
measurements were performed for each sample. The ICP Expert Software (Agilent Technologies, CA, USA) was used
to operate and process the ICP-OES data. The containers used in all experiments were cleaned with laboratory-grade
detergent, soaked in 10% nitric acid solution overnight, soaked in DI water, and rinsed with DI water. All studies
were performed in triplicate. The Tukey–Kramer HSD (honestly significant difference) test was performed to determine
significant differences (p < 0.05) using the JMP statistical software package (JMP 15.2, SAS Institute Inc., NC, USA).

3. Results and discussion

3.1. Characterization

3.1.1. SEM-EDS
SEM was used to investigate the surface morphology and changes in the WTR granules. The results are shown in Fig. 1.

The WTR granules form a 3D network of cross-linked calcium alginate retaining the WTR. The EDS spectrum in Figure S1
reveals the major components of the WTR granules: Al, C, O, and Si; along with the exchangeable cations (Mg2+, Ca2+, K+).
The SEM image (Fig. 1b) reveals the presence of macropores in the WTR granules. After sorption, no significant changes
were observed (Fig. 1a and b), showing that the surface and structural integrity of the WTR granules were not affected
by exposure to heavy metals in aqueous solutions. The elemental mapping images show the distribution of Cd, Cr, and Ni
within the WTR granules (Fig. 1e, 1f, and 1g). The concentration gradient of the adsorbed heavy metal was pronounced
after sorption with Cr (Fig. 1f) suggesting intraparticle diffusion.

3.1.2. FTIR
The FTIR spectra of the milled WTR (before granulation), fresh WTR granules, and treated WTR granules with the

three heavy metals are presented in Fig. 2. There were broad vibrational bands around 3440 cm−1 attributed to the O–H
stretching (Antunes Boca Santa et al., 2013). Mineral functional groups were detected on the surface, including Al–OH at
1032 cm−1 (Jiao et al., 2017), Si–O–T (T is tetrahedral Si or Al) at 778, and 470 cm−1 (Flanigen et al., 1974; Ji et al., 2020),
and Al-O at 534 cm−1 (Rajapaksha et al., 2012) which is consistent with the SEM-EDS results.

The bands that occurred at 1627–1640 cm−1 indicate H2O bending vibrations (Frost et al., 2001; Li et al., 2009). The
peaks at 797 cm−1 and 694 cm−1 indicate OH deformation and translation, respectively (Frost et al., 2001). The peaks
between 1385 and 1422 cm−1 are attributed to –COO– symmetrical stretching vibrations (Papageorgiou et al., 2010).
No substantial change was observed between the milled WTR (before granulation) and fresh WTR granules, suggesting
that the granulation process did not inhibit or remove the functional groups of the WTR. The peak at 1412 cm−1 (–
COO– symmetrical stretching vibrations) of the milled WTR blue-shifted to 1422 cm−1 after the granulation process
indicating the formation of crossed-linked calcium alginate. After being exposed to the three metals, this peak shifted
to lower wavenumbers (1419 cm−1), and the bands at 1385 cm−1 were observed in the presence of cadmium and nickel,
suggesting the interaction of the COO functional groups with the added metals. The increase in intensity of the bands
at about 1385 cm−1 after being loaded with metals is consistent with the findings of Zhao et al. (2011) who suggested
that these changes may be associated with the adsorption of metals. The peak intensity at 1083 cm−1 was enhanced after
being loaded with metals, suggesting the interaction of the –OH groups with the three metals (Huang et al., 2009).

3.2. Kinetic study

The effect of contact time on Cd, Cr, and Ni removal by WTR granules is shown in Fig. 3. The WTR granules were
capable of removing Cd, Cr, and Ni simultaneously. Within the first 2 h, more than 60% of Cd and Cr were removed, while
almost 40% removal of Ni was achieved. More than 83%, 91%, and 59% removal of Cd, Cr, and Ni were achieved after 36 h.

The fast removal observed in the first stage of the experiment was potentially due to the sorption processes that
occur at the solid-solution interface of the outer surface of the sorbent, which was readily accessible. Generally, the
sorption processes onto porous materials like the WTR granules are expected to take a longer time compared to nonporous
adsorbents, especially after the first 2 h. This is mainly due to the different sorption mechanisms of the sorbents. For the
porous materials, pore filling is the most common sorption mechanism that occurs in addition to other mechanisms
(e.g., cation exchange, surface precipitation, and electrostatic attraction) (Tran et al., 2017).
5
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Fig. 1. SEM images of WTR granules (a) surface, (b) cross-section, (c) before sorption, (d) after sorption; and elemental mapping images of the WTR
granule cross-section after sorption with (e) Cd, (f) Cr, and (g) Ni.
6
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Fig. 2. FTIR transmittance spectra of milled WTR (MWTR), fresh WTR granules (WTRG), WTR granules after treated with Cd (WTRG-Cd), Cr (WTRG-Cr),
nd Ni (WTRG-Ni)..

The fitted PFO, PSO, and intraparticle diffusion model parameters are shown in Table S1. For all three heavy metals,
he experimental data were fitted very well by the PSO model (R2 > 0.99). In addition, the qe values calculated from the
PSO model were more comparable to the qe values from the experiment, further indicating the PSO model provided the
best fit for the experimental kinetic data.

While the PSO model is capable of accurately describing sorption kinetic experimental data, it does not reveal the
sorption mechanisms (Tran et al., 2017). The intra-particle diffusion model, on the other hand, can be used to identify
sorption processes, as well as predict the rate-controlling step. To identify if the sorption is controlled by intra-particle
diffusion, a plot of qt against t0.5 is presented in Fig. 3b. In general, if the intra-particle diffusion plot is linear and passes
through the origin, the sorption is entirely governed by intra-particle diffusion (Tran et al., 2017). In this study, the overall
experimental data were not fit well (R2 < 0.79) by the intra-particle diffusion model (Table S1). Instead, the biphasic
relationship was observed in all three heavy metals. This indicated that intra-particle diffusion was the rate-controlling
step only in the first 2 h. The overall sorption process was controlled by a multistep mechanism.

3.3. Sorption isotherm study

The experimental data of each target metal pollutant from the sorption isotherm study are presented in Fig. 4. The
Langmuir and Freundlich isotherm parameters of Cd, Cr, and Ni are presented in Table S2. Both Langmuir and Freundlich
isotherm models provide excellent fits of the isotherm data of Cd, Cr, and Ni (R2 > 0.98). Langmuir isotherm gave a
marginally better fit for Ni sorption (R2 > 0.99), while Freundlich isotherm better represented Cd sorption (R2 > 0.99).
The Langmuir sorption capacity (Q0

max) was in the order of Cd > Cr > Ni. The values of KL and KF are in the same order of
r > Cd > Ni. To identify if the sorption is favorable, separation factor (RL) and Freundlich exponent (n) were considered.
he sorption is considered favorable when the values of RL and n are less than 1 (Tran et al., 2017). Based on the results

as shown in Table S2, sorption of Cd, Cr, and Ni on the WTR granules is considered favorable.
Table S3 shows the sorption capacity (Q0

max) of the WTR granules in comparison to various filter materials for metal
removal from stormwater runoff. The WTR granules had substantially higher Cd and Cr sorption capacities compared to
calcite, zeolite, sand, and iron filing. The Ni sorption capacity of WTR granules was comparable with calcite but lower than
zeolite and iron filings (Reddy et al., 2014). WTR granules showed higher Cd, Cr, and Ni sorption capacities compared to
all 11 filter materials used in stormwater bioretention facilities reported in Søberg et al. (2019).

3.4. Effect of environmental parameters

3.4.1. Effect of background electrolyte on Cd, Cr, and Ni removal
Four cations, including two monovalent (Na+ and K+) and two divalent cations (Ca2+ and Mg2+), and two anions

Cl− and NO3
−) were used to investigate the effect of background electrolytes on Cd, Cr, and Ni removal (Fig. 5a). The

ffect of background anions was examined by comparing the results between NaCl and NaNO3. Background anions had
a significant effect (p < 0.05) only on Cd removal, while no significant difference was observed in the case of Cr and Ni
7
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Fig. 3. Effect of contact time on Cd, Cr, and Ni removal by WTR granules showing (a) the relationship between C/C0 and time and (b) the amount
of heavy metals adsorbed by the WTR granules and time0.5 . Symbols represent experimental data and lines are fitting curves of (a) the pseudo-
second-order model and (b) linear regression. (WTR granules = 10 g/L; pH = 7.0; initial concentrations: Cd = 35 mg/L, Cr = 85 mg/L, Ni = 100
mg/L; ionic strength = 0.1 M NaNO3; T = 23 ◦C).

Fig. 4. Langmuir and Freundlich isotherms of Cd, Cr, and Ni on the WTR granules. Symbols represent experimental data and lines are fitting curves
f the Langmuir and Freundlich isotherm models. (WTR granules = 10 g/L; pH = 7.0; ionic strength = 0.1 M NaNO3; T = 23 ◦C).

emoval. This was potentially because Cd ions could form water-soluble complexes with Cl− and NO3
− (e.g., CdCl+ and

CdNO3
+), which led to the lower electrostatic attraction between the Cd ions and the surface of the WTR granules. The

lower Cd removal was observed with the presence of Cl− compared to NO3
− which was primarily because of the higher

tendency of Cl− to complex Cd ions (Hu et al., 2014). The distribution of the Cd species calculated using MINEQL+ Version
5 is presented in Figure S2, showing that the proportion of the Cd2+ ions is drastically lower in the presence of Cl− ions
(∼19%) compared to NO3

− ions (∼90%). The removal of Cd, as shown in Fig. 5b, was similar to the proportion of the Cd2+

ions in the case of NaNO3. Interestingly, the removal of Cd in the case of NaCl exceeded the proportion of the Cd2+ ions.
his finding suggests that CdCl+ has a higher tendency to be removed compared to CdNO3

+. The influence of both Cl−
and NO3

− on Ni and Cr removal was found to be comparable.
The influences of the background electrolyte cations on the removal of all three heavy metals were in the following

sequence: CaCl2 > MgCl2 > KCl ∼ NaCl. The divalent cations (Ca2+ and Mg2+) had a significantly greater (p < 0.05) adverse
influence on the Cd, Cr, and Ni removal than the monovalent cations (K+ and Na+). This was potentially due to the higher
concentration of Cl− which was double in the case of the divalent cations compared to the monovalent cations. The higher
concentration of Cl− could induce more water-soluble complex of the heavy metals as detailed previously, resulting in
8
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Fig. 5. Effects of (a) background electrolyte and (b) ionic strength on the removal of Cd, Cr, and Ni onto the WTR granules. (WTR granules = 10
g/L; pH = 7.0; initial concentrations of Cd, Cr, and Ni = 5 mg/L; T = 23 ◦C).

the reduction in removal by more than half of the removal with the presence of monovalent cations. However, the higher
concentration of Cl− was not the sole reason for the decrease in removal since the difference between the divalent cations
(Ca2+ and Mg2+) was also observed. The inhibitory influence of divalent cations on the removal of heavy metals was in the
order of Ca2+ > Mg2+. The findings were consistent with the previous study by Hu et al. (2014) in which the adsorption
of Cd onto magnetic graphene oxide-supported sulfanilic acid (MGO-SA) was examined. The recent study by Esfandiar
et al. (2022) also indicated that the inhibitory effect of divalent cations on the removal of metals was stronger than that
of monovalent cations. The influence of the electrolytes was the most pronounced in the removal of Cd, followed by Ni
and Cr, respectively.

3.4.2. Effect of ionic strength on Cd, Cr, and Ni removal
The ionic strength of an aqueous matrix is a very important parameter that affects the adsorption of heavy metal ions

at the solid–liquid interface (Stumm, 1992). The effects of ionic strength on the removal of Cd, Cr, and Ni onto the WTR
granules are shown in Fig. 5b. The increases in the ionic strength from 0 to 0.1 M resulted in a decrease in the removal of Cd
and Ni, which were present in the solution as cations. The removal of Cd and Ni at an ionic strength of 0.1 M significantly
decreased (p < 0.05) compared to the lower ionic strength. These results are in line with the previous studies (Hu et al.,
2014; Jiang et al., 2010; Rajapaksha et al., 2012; Reed and Nonavinakere, 1992; Wang et al., 2007). However, the change
was observed only when the ionic strength was higher than 0.01 M. When the ionic strength increased, more positively
charged Na ions potentially hindered the Cd and Ni access to available sorption sites on the WTR granules (Reed and
Nonavinakere, 1992). On the other hand, the trend was opposite in the case of Cr, which was present in the solution
as anions including CrO4

2−, HCrO4
− and Cr2O7

2− (Li et al., 2009). The removal of Cr at an ionic strength of 0.1 M was
significantly greater (p < 0.05) than the lower ionic strength. Generally, the background electrolytes are present in the
same plane as outer-sphere complexes. As a result, outer-sphere complexes are more sensitive to the change in ionic
strength compared to inner-sphere complexes. The decreasing adsorption with increasing solution ionic strength could
indicate that outer-sphere complexes are formed, or a mixture of inner-sphere and outer-sphere complexes is formed. In
contrast, no ionic strength dependence or increasing adsorption with increasing solution ionic strength is indicative of an
inner-sphere adsorption mechanism (Goldberg et al., 2001, 2007). Therefore, the adsorption of Cr could be attributed to
inner-sphere complexation. The adverse dependence on ionic strength adsorption of Cd and Ni suggested that the sorption
of Cd and Ni potentially involves outer-sphere complexation.

3.5. Sorption edge study and surface complexation modeling

Metal-ion sorption is pH-dependent due to the influence of pH on the surface properties of the adsorbent, and the
ionic forms of the heavy metals in solution (Ajouyed et al., 2010; Tran et al., 2017). Therefore, it is critical to examine
the sorption characteristics of Cd, Cr, and Ni onto the WTR granules under different pH. In this study, the pH range of 5.5
to 8 was selected based on the typical pH range of the stormwater runoff (Göbel et al., 2007). The effect of pH on the
sorption of Cd, Cr, and Ni onto the WTR granules is presented in Fig. 6. Two different heavy metal removal responses to
pH variation were observed. The removal of Cd and Ni was favorable when pH was more than 6.5. In contrast, the removal
9
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Fig. 6. Effect of pH on the sorption of Cd, Cr, and Ni onto the WTR granules. Symbols represent experimental data and lines are fitting curves of
the surface complexation model. (WTR granules = 10 g/L; initial concentrations of Cd, Cr, and Ni = 5 mg/L; ionic strength = 0.1 M NaNO3; T =

23 ◦C).

of Cr in which the removal decreased substantially when the pH was more than 6.5. This strong effect of pH is closely
related to the speciation of heavy metal ions and the charge of the WTR granule surfaces. At low pH, the WTR granule
surface was positively charged. Therefore, the WTR granule surface was attractive to the Cr ions, which were negatively
charged, resulting in favorable removal of Cr. However, at such pH level, a repulsive electrostatic force was produced
between positively charged ions (i.e., Cd and Ni ions) and the positively charged surface, resulting in unfavorable removal
of Cd and Ni.

Based on the SEM-EDS results, Al and O were found to be two major elements on the surface of the WTR granules
suggesting that aluminum hydroxide (AlOH) can be considered as the primary sites, which are in line with the previous
studies (Nagar et al., 2010; Punamiya et al., 2013). The surface reactions of AlOH consist of protonation and deprotonation,
which are shown in Table 1. Generally, Cd, Cr, and Ni can be described by inner- or outer-sphere complexations. Examples
of possible reaction stoichiometries can be expressed as follows:
Inner-sphere complexation:

≡AlOH + Cd+2
= ≡AlOCd+

+ H+

≡AlOH + CrO4
−2

+ H+
= ≡AlCrO4−2

+ H2O

≡AlOH + Ni+2
= ≡AlONi+ + H+

Outer-sphere complexation:

≡AlOH + Cd+2
+ H2O = ≡AlOCdOH + 2H+

≡AlOH + H+
+ CrO4

−2
= ≡AlOH2

+. . .CrO4
2−

≡AlOH + Ni+2
+ H2O = ≡AlOCdOH + 2H+

Previous studies showed that Cd and Ni removal by metal oxides was governed by an inner-sphere monodentate bonding
mechanism (Manceau et al., 2000; Rajapaksha et al., 2012). Based on the sorption edge study, the profile of the Cr removal
in exhibited a convex curve with a peak at pH 5.5, suggesting the dominance of monodentate complexes (Johnston and
Chrysochoou, 2014). In addition, the coordinating environment of sorbed As, an oxyanion similar to Cr, on WTR has been
reported to be inner-sphere complexation (Makris et al., 2007, 2009). Therefore, inner-sphere monodentate complexation
was considered in this study. The surface complexation reactions for Cd, Cr, and Ni are shown in Table 1. The parameters
for surface complexation models are shown in Table 2.

Experimental data for Cr and Ni are very well described by the surface complexation models, but adsorption of Ni
is underpredicted at pH∼6.5. In the case of Cd adsorption, the model is overpredicted at pH∼6.5. Overall, the surface
complexation models can predict the adsorption of Cd, Cr, and Ni. The intrinsic complexation constants of Cd, Cr, and Ni
in Table 1 show that the affinity of the three heavy metals with the WTR granules is in the order of Cr > Cd > Ni.

It is worth noting that the capacitance values and protonation and deprotonation reaction constants were taken from a
previous study (Goldberg et al., 2001). These parameters can be affected by crystallinity or morphology, which are unique
for each material (Reich and Koretsky, 2011). Therefore, the parameters used in this model may not be fully representative
10
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Table 1
Surface reactions and surface complexation reactions.
Reaction logK References

Surface reaction
≡ AlOH = ≡AlO−

+ H+
−11.2 Goldberg et al. (2001)

≡ AlOH + H+
= ≡ AlOH2

+ 5.0 Goldberg et al. (2001)
Surface complexation reactions
≡ AlOH + Cd+2

= ≡ AlOCd+
+ H+

−0.20 This study
≡ AlOH + CrO4

−2
+ H+

= ≡ AlCrO4−2
+ H2O 15.88 This study

≡ AlOH + Ni+2
= ≡ AlONi+ + H+

−2.23 This study

Table 2
WTR granules and solution properties used in the surface complexation modeling.
Parameter Value

Surface area (m2/g) 24.12
Total surface sites (mol L−1) 3 × 10−4

C1 (F m−2)a 1.2
C2 (F m−2)a 0.2
Initial concentration (mg L−1) 5
Ionic strength (M, NaNO3) 0.1

aGoldberg et al. (2001)

of the crystallinity or morphology of the WTR granules. In addition, only inner-sphere monodentate complexation was
considered in these models; outer-sphere and multidentate complexations were not included. The accuracy of the models
can be further improved by integrating multiple complexes or multiple site models.

4. Practical applications and future research prospects

The findings from this study have important implications for the design of stormwater treatment systems using the
WTR granules. It is essential to examine the kinetic and sorption isotherm data before implementing a new treatment
system. A longer reaction time would lead to lower metal concentrations in stormwater. Treatment system designs that
increase residence time, such as baffles in the treatment channel or a greater bed depth, can be utilized to promote metal
removal. Together with the expected metal amount in the target treatment areas, the results from sorption isotherm
studies can be used to determine the quantity of the WTR granules needed for the implementation of the treatment
system, and estimate their service lifetime. Electrolytes in the target treatment areas may be considered to determine
the potential inhibiting or enhancing effects on the metal removal. The surface complexation models and intrinsic
complexation constants obtained can be used to predict the removal performance under different water chemistry. The
results from this study provide essential insights into the potential of WTR granules for the successful treatment of
stormwater runoff. The effect of co-contaminants and humic acid, long-term removal under flow-through conditions,
and the removal performance with real stormwater runoff under field conditions, remains to be further investigated to
gain a better understanding of the performance capacity of this green and innovative sorbent.

5. Conclusions

The WTR granules simultaneously removed Cd, Cr, and Ni. The pseudo-second-order, Langmuir, and Freundlich models
adequately explained the removal characteristics of all three heavy metals. Environmental parameters had different effects
on the metal removal by the WTR granules. At > 0.01 M ionic strength, Cd and Ni adsorption decreased, whereas sorption
of Cr increased as ionic strength increased. Anions in the background electrolyte had a strong effect on Cd sorption.
Divalent cations had a greater negative impact on metal removal than monovalent cations. Surface complexation modeling
suggested that adsorption of Cr was mainly governed by inner-sphere complexation, while the sorption of Cd and Ni also
involved outer-sphere complexation. The TLM model adequately described the removal of Cd, Cr, and Ni in a typical pH
range of stormwater runoff. The WTR granules can be readily implemented as green filter media to remove heavy metals
from stormwater runoff.
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